Functional (meta)genomics

Harmonization of techniques associated with

ruminal microbiome and metagenome analysis

Graeme Attwood

Joint RuminOmics/Rumen Microbial Genomics Network Workshop

Farming, Food and Health. First

Te Ahuwhenua, Te Kai me te Whai Ora. Tuatahi

Functional (meta)genomics methods and techniques

Functional genomics

metagenom е sequence data **Transcriptomics Proteomics Metabolomics** Mutagenesis

Genome/

Phenotype Gene/protein functions

The Glycobiome of the Rumen Bacterium *Butyrivibrio proteoclasticus* B316^T Highlights Adaptation to a Polysaccharide-Rich Environment

William J. Kelly¹, Sinead C. Leahy¹, Eric Altermann¹, Carl J. Yeoman^{1,2*}, Jonathan C. Dunne^{1,3}, Zhanhao Kong¹, Diana M. Pacheco¹, Dong Li¹, Samantha J. Noel¹, Christina D. Moon¹, Adrian L. Cookson¹, Graeme T. Attwood^{1*}

PLos one

The Genome Sequence of the Rumen Methanogen Methanobrevibacter ruminantium Reveals New **Possibilities for Controlling Ruminant Methane Emissions**

Sinead C. Leahy, William J. Kelly, Eric Altermann, Ron S. Ronimus, Carl J. Yeoman, Diana M. Pacheco, Dong Li, Zhanhao Kong, Sharla McTavish, Carrie Sang, Suzanne C. Lambie, Peter H. Janssen, Debjit Dey, Graeme T. Attwood*

Rumen Microbial Genomics, Food Metabolism and Microbiology Section, Food and Textiles Group, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand

0.13 avi

PLos one

Joint RuminOmics/Rumen Microbial Genomics Network Workshop

Leahy et al. (2010) PLoS ONE 5(1): e8926

Comparison of methanogen genomes

Chemogenomics targets

Functional Category	Annetation
Locus tag	Annotation
mru0998, 1577 mru0152	AroBA LysA
Cell Cycle mru1864	DNA topoisomerase VI A
Cell Envelope mru0456	GlmU
Central Carbon Metabolism mru0655	SdhB
Energy metabolism	
mru0696 mru0569 mru1398 mru2142 mru1393 mru1619 mru1695 mru1262 mru1916, 1923 mru0344, 0345 mru0668, 1778, 1971, 0436, 1929, 0097, 0181, 1915	Ahal Mer EhaO Mtd Ftr1 Mch H₄MPT-linked C1 transfer pathway protein AtwA1 MtrEH FwdAC Methanogenesis marker proteins 1, 2, 3, 7, 8, 10, 11, 13, 14, 15
Lipid Metabolism mru0924 mru0922	ldsA Fni
Protein Synthesis mru2169 2069	GatAB
Vitamins & Cofactors mru1559	CitG

Vaccine targets

Vaccine targets

Functional (Functional Category						
Locus tag				Annotation			
Energy Meta mru0697 mru1405*, 1411,	abolism 1406*, 1412	1407,	1408	AhaK EhaHGFEAB			
mru2006, 2012, mru1917, 1923*	2007, 2013 1918,	2008, 1921*,	2010 1922*,	EhbIHGECB MtrGFCDE			
Protein Fate mru0239 mru0482 mru1234*	2			SecG SecE type IV leader peptidase family protein			
Vitamins & mru0540	Cofacto	rs		CbiN1			
Hypothetica mru0542*, 0233, 1144, 1635*, 2056, 0196, 0428*, 0693, 0147, 0543, 0716*, 1232, 1694	0840*, 0234*, 1231, 1955, 2146* 0225*, 0499, 0832, 0377*, 0833, 0718*, 1550,	1693, 0330, 1480*, 2015*, 0529 0328*, 0596, 1098, 1375*, 1991, 0838, 1884*,	2156* 1021, 1585, 2046*, 0081, 0412, 0597, 1385, 1641, 0545*, 0968, 2202,	Hypothetical proteins			
* ORFs ≥ 5 TMHs							

Joint RuminOmics/Rumen Microbial Genomics Network Workshop

two NADPH-dependent F420 dehydrogenase (npdG1, 2) genes and three NADP-dependent alcohol dehydrogenase (adh1, 2 and 3) genes

agresearch

does this allow growth on ethanol or isopropanol via NADP+dependent oxidation of the alcohol coupled to F420 reduction of methenyl-H4MPT to methyl-H4MPT?

Stimulation of M1 growth by alcohols

agresearch

Locus tag Annotation	Fold difference						
Energy Metabolism - Formate Metabolism							
mru0333 formate dehydrogenase alpha subunit FdhA	3.46						
mru0334 formate dehydrogenase beta subunit FdhB	2.34						
Energy Metabolism - Methanogenesis							
mru1928 methyl-coenzyme M reductase beta subunit McrB	2.26						
mru1926 methyl-coenzyme M reductase C subunit McrC	2.39						
mru1927 methyl-coenzyme M reductase D subunit McrD	2.23						
mru1925 methyl-coenzyme M reductase gamma subunit McrG	3.41						
mru1919 tetrahydromethanopterin S-methyltransferase subunit A MtrA	2.02						
mru1920 tetrahydromethanopterin S-methyltransferase subunit B MtrB	2.23						
mru1921 tetrahydromethanopterin S-methyltransferase subunit C MtrC	3.23						
mru1916 tetrahydromethanopterin S-methyltransferase subunit H MtrH	2.14						
mru1907 methyl viologen-reducing hydrogenase gamma subunit MvhG	2.25						
mru0344 tungsten formylmethanofuran dehydrogenase subunit A FwdA	2.12						
Cell envelope - Cell surface							
mru1222 adhesin-like protein	2.31						
mru2173 adhesin-like protein	2.28						
mru2134 adhesin-like protein	4.08						
mru0076 adhesin-like protein	2.01						
mru0828 adhesin-like protein with transglutaminase domain	2.14						
mru1499 adhesin-like protein with transglutaminase domain	2.50						

Significantly up-regulated (>2 fold) in co-culture vs monoculture

Formylmethanofuran dehydrogenase (fwdA),

H₄MPT methyltransferase (mtrABCH)

Methyl CoM reductase (mcrBCDG),

Methyl viologen-reducing hydrogenase (mvhG),

Formate utilisation (fdhAB)

Joint RuminOmics/Rumen Microbial Genomics Network Workshop

Sheep vary in their CH₄ emissions per unit of intake

Sampling, nucleic acids extractions and analyses

4 highest and 4 lowest methane emitting sheep, stomach tubed rumen content x 2 time points agresearch

DNA and RNA extractions

DNA extracted from frozen digesta using "Repeated Bead Beating and Column (RBB+C) purification" method (ref)

HMW DNA, for large paired-end insert libraries, prepared using a nonmechanical lysis DNA extraction method (*ref*)

RNA extracted for transcript analysis using a hot lysis-acid phenol extraction method.

RNA concentration was determined using Qubit and quality checked via Bioanalyzer

In vitro experimentation on methanogen co-cultures

- Methanogens in the rumen usually experience H₂ concentrations in the range 0.1 to 50 µM
- In the lab, methanogens grown by pumping with $H_2 + CO_2$ to 2 atm = ~770 μ M H_2
- As methanogens grow, H₂ is used, so over time H₂ concentration falls in cultures, until cultures are re-pumped with H₂
- Controlling H₂ at a low concentration is technically not possible without a H₂producing partner
- Low H₂ concentrations achieved by co-inoculating with the slow growing, cellulose-degrading, H₂-producing rumen bacterium *Ruminococcus flavefaciens* FD1
- In these co-cultures, $\rm H_2$ is expected to be in the rumen relevant range ie 0.1 to 50 μM

Co-culture set up and sample collections

agresearch

Methanobrevibacter ruminantium M1

30 **→**M1 agresearch 25 —▲— M1 + FD1 Low H2 Methanobrevibacter 20 ruminantium M1 in co-culture 15 with Ruminococcus flavefaciens FD-1 10 5 0 🚺 24 48 72 96 0 Succinic 4 **¬**■Formic 3 Acetic 4 2 3 1 Volatile Fatty Acids 2 0 -1 0 FD1 FD1 -2 alone alone M1 52hr M1 76hr M1+FD1 M1+FD1 M1+FD1 M1+FD1 52hr 76hr Low H2 High H2 High H2 Low H2 52hr 76hr 52hr 76hr

Cultured rumen methanogens available for *in vitro* testing

Methanogen	Strain	Mode of methane formation
<i>Methanobrevibacter</i> spp. (<i>ruminantium</i> group)	M1, YLM1, NT7*	hydrogenotrophs
Methanobrevibacter spp. (gottschalkii group)	SM9, D5	hydrogenotrophs
<i>Methanobrevibacter</i> sp. (<i>wolinii</i> clade)	AbM4	hydrogenotroph
Methanobacterium formicicum	BRM9	hydrogenotroph
Methanosphaera sp.	ISO3-F5	methylotroph
Methanosarcina sp.	CM1	aceticlastic
Rumen Cluster C	ISO4-H5	methylotroph, co-culture with a <i>Succinivibrio</i> sp.
H ₂ producer		Preferred substrate
Ruminococcus flavefaciens	FD-1	Cellulose degrader
Butyrivibrio proteoclasticus	B316	Xylan degrader

Acknowledgements

Funding provided through the NZAGRC science programme

Research was funded by and carried out under contract to the Pastoral Greenhouse Gas Research Consortium (PGgRc)

New Zealand Government Funded by the New Zealand Government to support the objectives of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases

AgResearch Core funding Bill Kelly Sinead Leahy Christina Moon Eric Altermann Adrian Cookson Dragana Gagic Suzanne Lambie Jonathan Dunne Zhanhao Kong Carl Yeoman Sandra Kittelmann Henning Seedorf Peter Janssen Ron Ronimus Neil Wedlock John McEwan Cesar Pinares-Patino acresearc

Joint Genome Institute Edward Rubin Weibing Shi Christina Fan