EFFICIENT & ECOLOGICALLY-FRIENDLY PIG AND POULTRY PRODUCTION.

A WHOLE-SYSTEMS APPROACH TO OPTIMISING FEED EFFICIENCY AND REDUCING THE ECOLOGICAL FOOTPRINT OF MONOGASTRICS.

BASIC DATA

Funding: EU-FP7 (€ 6 million)

Start date: 1 February 2013

Duration: 48 months (2013 to 2017)

TRIAL № B-443 (IRTA) ECO-FCE PROJECT. TRIAL №1 WP2: IDENTIFICATION AND OPTIMISATION OF FEED STRATEGIES

IRTA-CReSA

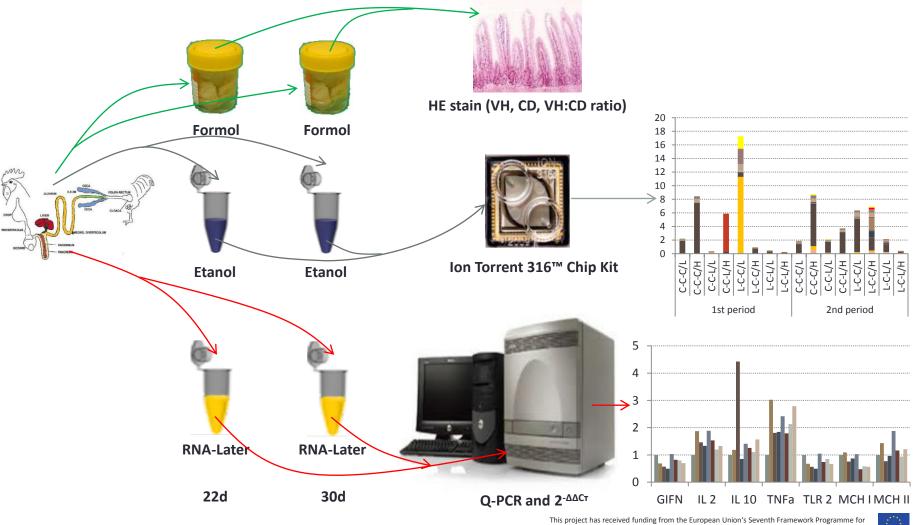
Results of Intestinal Microbiota (deep sequencing), Intestinal Mucosa Histology, Intestinal Mucosa Immunological Parameters

OBJECTIVES

- The main objective was to investigate nutritional conditioning as a feeding regime strategy to improve the lifetime performance and nutrient utilisation of broiler chickens.
- In the present trial, the target nutrients were phosphorus and calcium, and the specific objective was to analyse differences between good and poor FCR animals.
- The criteria to evaluate the effects of P/Ca nutritional conditioning were:

Productive parameters (gain and efficiency), gut morphology and immunology, and intestinal microbiota composition in birds allocated individually from 14-22 days and from 22-30 days.

Trial scheduler



	Fi	gu	re	2.	Tri	ial	B-	43	33	EC	0	FC	Œ	Nι	utr	iti	on	al	со	nd	iti	on	in	g P	•																												
	Oct.																																	No	w.																		
	28	29	30	31	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29 3	30 :	1	2	3 4	4 5	5 6	5 7	1 8	9	10			NRC Pa	and	Ca n	equi	reme	ents		
Figure 2. Trial B-433 ECO-FCE Nutritional conditioning P Nov. M2:00 bit 1:0:2 0:0:1 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:																																																					
с-с-с						_									L	L		Ļ		Ļ			L	L	L							4	4		1	1		Ļ	Ļ	Ļ	Ļ		?		+		_						
C-C-L																			-																								2			leal P d	ig (12 re	nlica	tes o	f3 bi	rds x	(TRT)
	_			_	_			_																											T	Т		T		1			-		_		-		-				
-C-C															F			F		t			t		F								Ť		t	t		t	t	t	F		2		_							_	,
																																													ſ				,			1	
С-L																Ĺ				İ.															İ.	İ.		İ.	İ.	İ.	İ.		?									-	
											F	eed	d in	ntal	ke,	we	eigh	nt g	ain	, m	orta	lity	y pe	er p	en.	We	lfa	re a	asse	esm	ent	:																					
																							Γ	Ē								Т	Т		Т	Т		Т	Т	Г	Г				Т								
																inc	aiv	iau	aı	cag	ges																																
	28	29	30	31	1	2	3	4	5																																			Ind	ivio	dual FC	R (all bir	ds)				
Age (d)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22																														
	_		_	_	_			_								48	chic	ken:	5						San	nplin	g 6 g	good	and	16 b	ad x	TRT								L	L												
C-C-C																							?		6	6														L	L			Bor	ie i	mineral	lisa	tion (6 go	od a	nd 6	bad	X TRT
																48	chic	ken:	s									24																									
C-L		_	_			_																	?	L	6	6						_	_			1		1		L													
	_		_	_	_	_	_	_							L	_	_	L		L			_	L								_	4	_	1	+	_	1	1	L	L												
							_											-			-			Inc	livi	du:	al-d	ag	es			_	_	_	-	_	_	1			1							-					
			_	_	_	_	_									_	-	1		1	-		-				_	-		_	_	_	4	_	-	+	_	1	-	1	1	_							-	-	uenc	ing)	
	_	_	_	_		_	_	_																								-	+	_	+	+	-	+	-	-	-	-	-		-								
Age (d)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	5 17	18	19	20	21	22	1-		-	26	27	28	29	30	-	_		_				_	L_	⊢	-	-								and	jeju	num)
	-		_	-	_	_	_	-							-		-	-		-				24	dhid	cens	_				_	S			5 goi	od a	nd 6	bad	X TR	T	⊢	-	-	(0)	goo	od and	6 D	ad x	ікі)			-	
C	_		_	_		_	_	_							-	-	-	-	_	-	-		-				_				?	-	6	6	+	+	-	+	┝	-	⊢	-	-		+		_					-	
			_																					24	chic	kens									+	╀	-	+	-	-	-	-			+		_			-		_	
L															-	-	-	-	-	-											1	-	6	6	-	-	+	┝	┝	⊢	⊢	-	-		+		_			-		-	
																								24	dhid	cens					2		-	-	4	8	+	┝	┝	⊢	⊢	-	-		+		_			-		-	
															-	-	-	-	_	-				24							1	-	6	0	┝	+	+	┝	┝	⊢	⊢	-			+		_			-		-	
-61																								24	chic	cens					2		-	-	┝	+	+	┝	⊢	⊢	⊢	-			+		_			-		-	
															-	_	-	-		-	-										1	_	6	6	+-	+	-	-	+-	-	-	-	-		+		_						

Sampling and analytical methods

research, technological development and demonstration under grant agreement No. 311794

First Period Histology

Factor		Villi hei	ght (μm)	Crypt de	epth (μm)	VH:C	D ratio
Feed conversion rate	2	25% PFC	25% GFC	25% PFC	25% GFC	25% PFC	25% GFC
	Average	627.20	594.80	166.93	158.27	4.02	3.88
	SE	11.26	12.22	3.98	3.37	0.12	0.09
	Р	0.	052	0.	098	0	.35
Starter diet		Control diet	Low P/Ca diet	Control diet	Low P/Ca diet	Control diet	Low P/Ca diet
	Average	618.87	603.13	162.40	162.80	4.05	3.84
	SE	10.15	13.28	4.01	3.38	0.11	0.10
	Ρ	0	.35	0	.94	0	.16

Anova(model.glm,type='II',test.statistic='Wald') Analysis of Deviance Table (Type II tests)

PFC=Poor Feed conversion rate

GFC=Good Feed conversion rate

SE=Standard error

Second Period Histology

Factor		Villi hei	ght (μm)	Crypt de	epth (μm)	VH:C	D ratio
Feed conversion rate		25% PFC	25% GFC	25% PFC	25% GFC	25% PFC	25% GFC
	Average	628.73	716.57	146.03	115.93	4.67	6.51
	SE	6.70	6.31	2.68	1.93	0.10	0.10
	Р	<0.	0001	<0.	0001	<0.	0001
Starter diet		Control diet	Low P/Ca diet	Control diet	Low P/Ca diet	Control diet	Low P/Ca diet
	Average	664.67	680.63	131.77	130.20	5.54	5.64
	SE	7.55	6.58	2.59	2.47	0.12	0.11
	Р	0	.11	0	.66	0	.54
Finisher diet		Control diet	Low P/Ca diet	Control diet	Low P/Ca diet	Control diet	Low P/Ca diet
	Average	688.37	656.93	139.97	122.00	5.32	5.86
	SE	7.51	6.51	2.51	2.41	0.11	0.12
	Р	0.0	017	<0.	0001	<0	.001

Anova(model.glm,type='II',test.statistic='Wald') Analysis of Deviance Table (Type II tests)

PFC=Poor Feed conversion rate

GFC=Good Feed conversion rate

SE=Standard error

Q-PCR Immunological Parameters of Ileal Mucosa

First Period

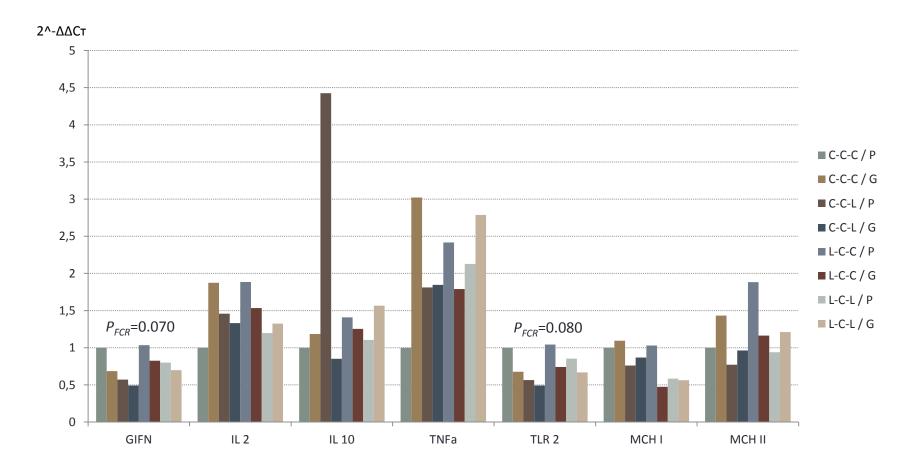
	GIFN	IL 2	IL 10	TNFa	TLR 2	MCH I	MCH II
C-C/P	1	1	1	1	1	1	1
C-C/G	1.174	0.599	0.296	0.473	1.127	2.079	0.526
L-C/P	1.173	0.732	0.261	0.818	1.158	2.636	0.876
L-C/G	0.719	0.672	1.356	0.578	0.943	2.574	0.676
Feed conversion rate ¹	<i>P</i> =0.908	<i>P</i> =0.356	<i>P</i> =0.603	<i>P</i> =0.204	<i>P</i> =0.817	<i>P</i> =0.644	<i>P</i> =0.094
Starter diet ¹	<i>P=</i> 0.773	<i>P=</i> 0.386	<i>P=</i> 0.862	<i>P=</i> 0.773	<i>P=</i> 0.954	<i>P=</i> 0.908	<i>P=</i> 0.908

Second Period

	GIFN	IL 2	IL 10	TNFa	TLR 2	MCH I	MCH II
C-C-C/P	1	1	1	1	1	1	1
C-C-C/G	0.685	1.873	1.184	3.022	0.678	1.095	1.434
C-C-L/P	0.571	1.459	4.426	1.811	0.565	0.760	0.771
C-C-L/G	0.492	1.332	0.851	1.845	0.491	0.869	0.963
L-C-C/P	1.034	1.884	1.409	2.417	1.044	1.029	1.882
L-C-C/G	0.825	1.533	1.254	1.790	0.741	0.475	1.163
L-C-L/P	0.799	1.197	1.104	2.128	0.852	0.584	0.939
L-C-L/G	0.699	1.325	1.566	2.787	0.668	0.562	1.211
Feed conversion rate ¹	<i>P</i> =0.070	<i>P</i> =0.257	<i>P</i> =0.718	<i>P</i> =0.174	<i>P</i> =0.080	<i>P</i> =0.885	<i>P</i> =0.509
Starter diet ¹	<i>P</i> =0.409	<i>P</i> =0.934	<i>P</i> =0.766	<i>P</i> =0.257	<i>P</i> =0.433	<i>P</i> =0.208	<i>P</i> =0.446
Finisher diet ¹	<i>P</i> =0.143	<i>P=</i> 0.564	<i>P=</i> 0.566	<i>P=</i> 0.550	<i>P=</i> 0.224	<i>P=</i> 0.470	<i>P=</i> 0.343

¹Kruskal-Wallis rank sum test

First Period Q-PCR Immunological Parameters of Ileal Mucosa



Second Period

Q-PCR Immunological Parameters of Ileal Mucosa

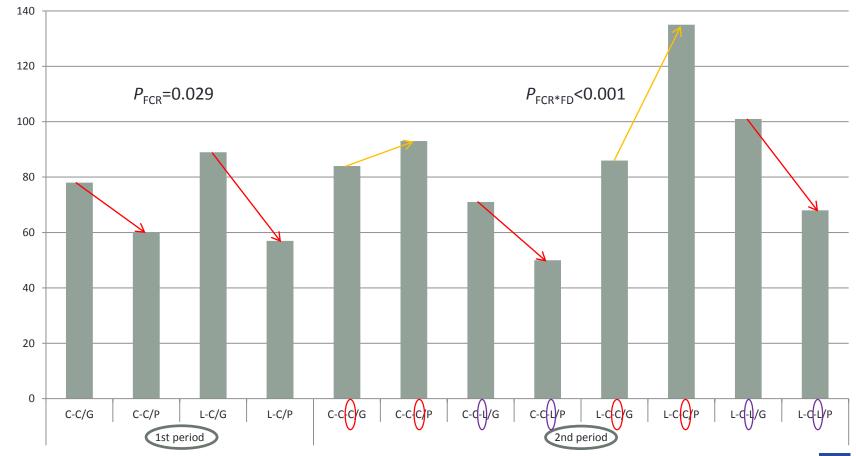
Summary of Ion-Torrent analysis of Ileal Microbiota

		First P	Period	
	C-C/G	C-C/P	L-C/G	L-C/P
Number of sequences	345221	353196	382219	311926
% Lactobacillus	91.74	86.38	83.36	93.99
% Other bacteria	8.26	13.62	16.64	6.01
Biodiversity	78	60	89	57

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 311794.

Summary of Ion-Torrent analysis of Ileal Microbiota

				Second	Period			
	C-C-C/G	C-C-C/P	C-C-L/G	C-C-L/P	L-C-C/G	L-C-C/P	L-C-L/G	L-C-L/P
Number of sequences	125949	181309	173262	201476	197613	200657	166206	155863
% Lactobacillus	91.19	83.62	91.07	90.61	86.99	84.98	90.82	93.75
% Other bacteria	8.81	16.38	8.93	9.39	13.01	15.02	9.18	6.25
Biodiversity	84	93	71	50	86	135	101	68



Biodiversity Degree of Ileal Microbiota

N of OTUs

Biodiversity

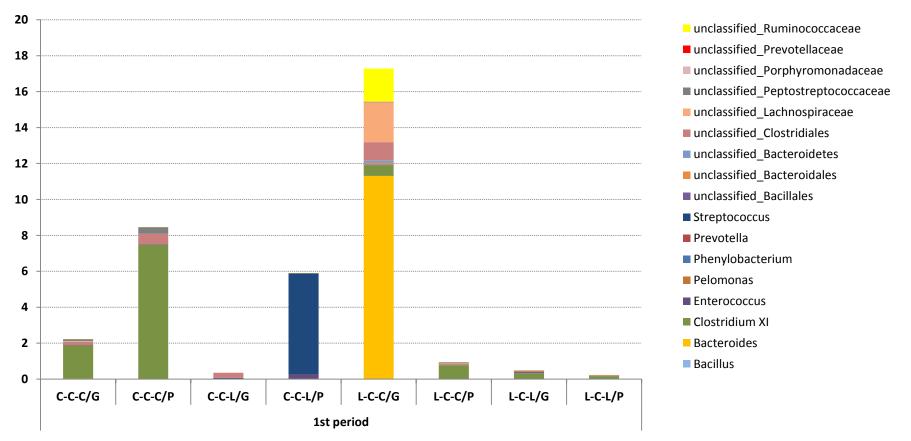
C= Normal P/Ca diet; L= Low P/Ca diet; G= Good FCR; P= Poor FCR

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 311794.

Significant differences for Ileal Microbiota components related with FCR

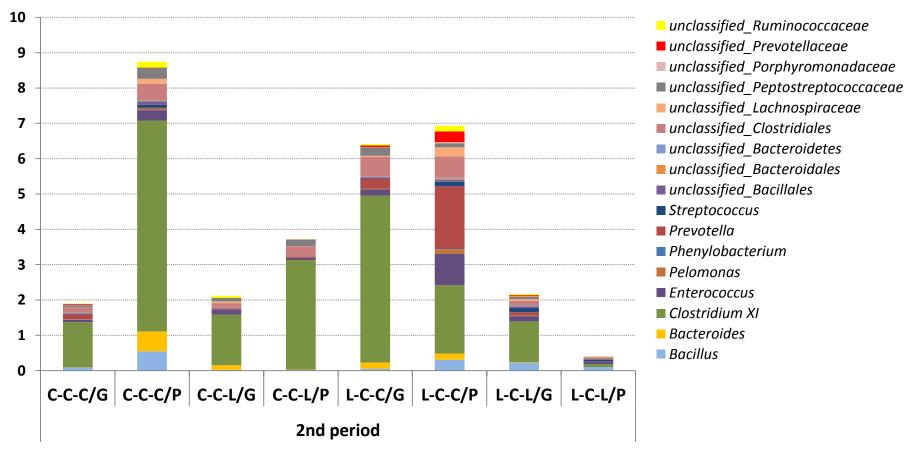
Kruskal-Wallis rank sum test & Feed Conversion Ratio	Average %GFC	Average %BFC	P-value
Anaerostipes	1.66E-03	ND	0.027
Aerococcus	8.17E-05	1.43E-02	0.035
unclassified_Burkholderiales	1.61E-03	8.53E-04	0.044
unclassified_Lactobacillaceae	1.36E+00	1.23E+00	0.059
Brachybacterium	2.68E-04	ND	0.064
Curvibacter	2.04E-03	ND	0.064
Delftia	7.47E-04	ND	0.064
Parabacteroides	2.77E-03	ND	0.064

Significant differences for Ileal Microbiota components related with Diet

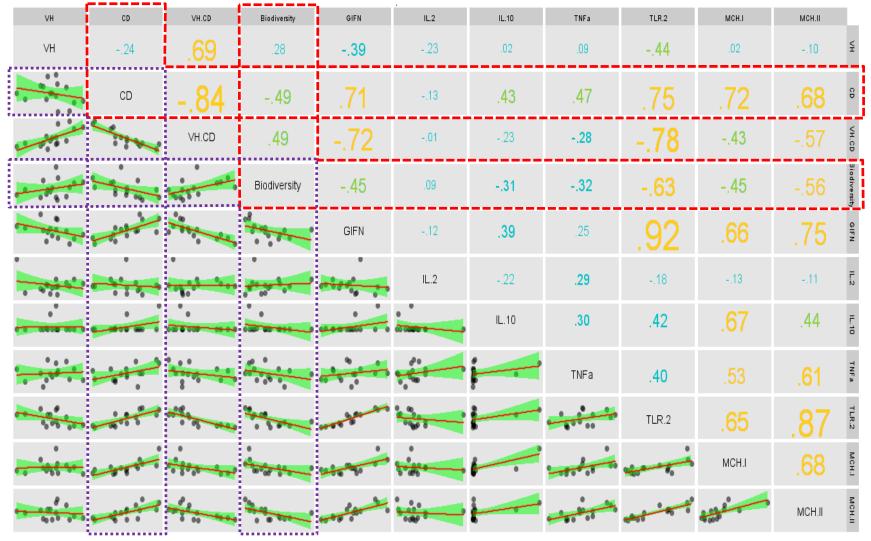

Kruskal-Wallis rank sum test & Starter Diet	Average %IDC	Average %IDL	P-value	Kruskal-Wallis rank sum test & Finisher Diet	Average %FDC	Average %FDL	P-value
Jeotgalicoccus	ND	1.30E-03	0.027	Butyricicoccus	2.73E-02	4.33E-03	0.006
unclassified_Bacteroidetes	4.59E-03	2.90E-02	0.044	unclassified_Betaproteobacteria	8.37E-04	ND	0.011
Catenibacterium	ND	1.51E-03	0.064	unclassified_Clostridiales	4.42E-01	1.52E-01	0.016
Comamonas	8.72E-04	ND	0.064	unclassified_Clostridia	5.01E-03	1.86E-03	0.019
Deinococcus	1.45E-03	ND	0.064	Bacteroides	2.30E-01	3.78E-02	0.02
Finegoldia	ND	3.88E-04	0.064	Clostridium.XI	3.48E+00	1.44E+00	0.021
Peptoniphilus	ND	9.91E-04	0.064	unclassified_Bacteria	2.22E+00	1.77E+00	0.021
unclassified_Bradyrhizobiaceae	ND	1.91E-04	0.064	unclassified_Lachnospiraceae	1.10E-01	2.50E-02	0.021
Erysipelotrichaceae_incerta_sedis	1.44E-04	2.49E-03	0.074	Methylobacterium	1.13E-03	1.50E-04	0.025
Neisseria	8.17E-05	9.37E-04	0.097	Streptophyta	1.28E-02	2.30E-03	0.027
unclassified_Rhodobacteraceae	6.89E-05	5.44E-04	0.097	Cloacibacterium	ND	2.84E-04	0.027
				Fusobacterium	ND	2.68E-04	0.027
				Ruminococcus	1.71E-03	ND	0.027

Streptophyta	1.28E-02	2.30E-03	0.027
Cloacibacterium	ND	2.84E-04	0.027
Fusobacterium	ND	2.68E-04	0.027
Ruminococcus	1.71E-03	ND	0.027
unclassified_Peptostreptococcaceae	1.81E-01	8.99E-02	0.027
Clostridium.IV	2.47E-03	2.60E-03	0.037
Sphingomonas	7.70E-04	ND	0.043
unclassified_Firmicutes	8.32E-01	7.56E-01	0.046
unclassified_Ruminococcaceae	9.29E-02	2.32E-02	0.046
Barnesiella	2.76E-03	1.50E-04	0.046
Alistipes	1.13E-02	2.74E-03	0.061
Brachybacterium	ND	1.44E-04	0.064
Coprobacillus	6.38E-04	ND	0.064
Coprococcus	1.39E-03	ND	0.064
Gemella	ND	9.26E-04	0.064
Granulicatella	2.42E-03	ND	0.064
Megasphaera	2.66E-03	ND	0.064
Peptoniphilus	ND	1.66E-03	0.064
Clostridium.XIVb	2.32E-02	2.97E-03	0.073
unclassified_Bacteroidales	1.30E-02	2.85E-03	0.073
Sarcina	1.21E-02	1.44E-04	0.074
Pelomonas	4.39E-02	1.05E-02	0.074
unclassified_Comamonadaceae	6.31E-03	2.84E-03	0.093
Actinomyces	7.37E-04	ND	0.097

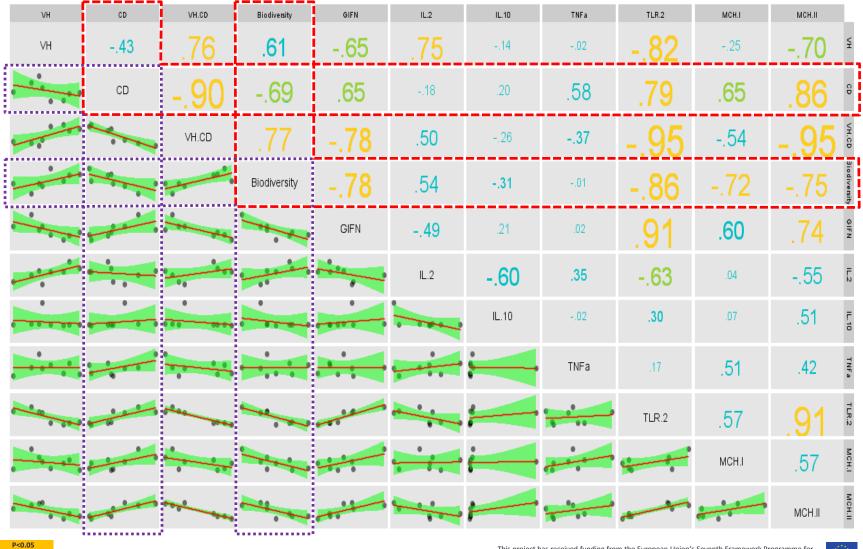
Principal Ileal Microbiota components without Lactobacillus ECOFCE


% of sequences

Principal Ileal Microbiota components without *Lactobacillus* ECOFCE


% of sequences

Pearson's product-moment correlation



Pearson's product-moment correlation (Good FCR)

0.1>P>0.05

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 311794.

Pearson's product-moment correlation (Poor FCR)

P<0.05

0.1>P>0.05

VH	CD	VH.CD	Biodiversity	GIFN	, IL.2	IL.10	TNFa	TLR.2	MCH.I	MCH.II	
VH	.32	.52	.04	.05	75	.19	.24	.09	.35	.33	Ϋ́
	CD	58	41	.80	39	.75	.44	.78	.88	.70	ŝ
	-	VH.CD	.43	71	33	30	27	70	38	48	VH.CD
			Biodiversity	26	.03	30	48	54	33	50	Biodiversity
			****	GIFN	05	.54	.47	.94	.73	.84	GIFN
				·	IL.2	16	.29	05	26	10	12
						IL.10	.48	.51	.92	.42	IL.10
• <u>•</u> •••							TNFa	.62	.57	.73	TNFa
	-				***			TLR.2	.72	.94	TLR.2
	-		•						MCH.I	.69	MCH.I
	- the second second				***			and the second second	-	MCH.II	MCH.II

EC •• FCE

CONCLUSIONS

- During the second period of the trial, significant effect on intestinal morphology was observed for diet and FCR.
- Correlations (tendency) between some immunological parameters and FCR have been obtained: poor FCR higher inflammatory response.
- Significant differences of intestinal microbiota were obtained in relation with diet changes and FCR.
- Significant correlations between intestinal morphology, intestinal microbiota biodiversity and immunological parameters of intestinal mucosa were obtained.

ACKNOWLEDGMENTS

- Dr. Maria Francesch
- Dr. David Torrallardona
- Dr. Raquel Quintanilla
- Dr. Marina Gispert
- Dr. Emma Fàbrega
- Dr. Anna Pérez-Vendrell
- Ana Maria Pérez de Rozas, Judith González and Nuria Aloy
- Ramon Salvador, Lluis Llauradó and Alfonso Mejias
- Daniel Rodas, Felipe Álvarez and Liliana Signeanu
- Lluís Padrell, Andreu Vilalta, Joan MartiAbel Rodríguez
- Miguel Algaba and Liliana Signeanu

TRIAL Nº B-443 (IRTA) ECO-FCE PROJECT. TRIAL Nº1 WP2: IDENTIFICATION AND OPTIMISATION OF FEED STRATEGIES

THANKS FOR YOUR ATTENTION

IRTA-CReSA

Results of Intestinal Microbiota (deep sequencing), Intestinal Mucosa Histology, Intestinal Mucosa Immunological Parameters

