An outline of the ruminant livestock industry in Hungary

(structure of the livestock industry and future priorities for the sector in Hungary)

István Fehér PhD Professor emeritus József Róth PhD student Szent István University, Gödöllő

CHANGES OF CONSUMPTION AND TRADE OF ANIMAL PRODUCTS

Changes of the food consomption(kcal/person/day)

Source: Alexandratos (2006)

World wide trends of meat and milk consumption Source : WB

	Consumption (million tons)			
Region	1983	1997	2020	
Developed countries				
Cattle	32	30	34	
Нод	34	36	39	
Poultry	19	28	38	
Total meat	88	99	114	
Milk	233	254	276	
Developing countries				
Cattle	16	27	52	
Нод	20	46	80	
Poultry	10	29	67	
Total meat	50	112	213	
Milk	122	198	372	

Meat consumption trends in the EU

Source: European Commission, 2006

Food supply of the central European countries (2006-2011)

Slowly decreasing energy in Hungary!

Source: Faostat

Main characteristics of animal products in Hungary

Production and trade of raw materials and animal products in Hungary

Livestock numbers in Hungary, 1901-2010

Structure of the Hungarian livestock production, 2013 (%)

Source: HCSO, AKI

Change of the structure of Hungarian agriculture (2003-2013)

Crop production

- Animal husbandry
- Agricultural services, non-agricultural secondary activities

Source: FAOSTAT

Number of animals per 100 hectares of agricultural area by species 2000-2013 (pieces)

Food security issues, consumers' habits in Hungary

The share of consumer spending* on food in Hungary

If the level of consumer incomes has a significant impact on the demand for food

Daily protein consumption per capita by origin, 2000-2012 (g)

Source: HCSO

Source: HCSO

Number of professional livestock producers at the time of farm structure surveys

Source: Research Institute of Agricultural Economics, Hungarian FADN

Change in return on total output

Source: Research Institute of Agricultural Economics, Hungarian FADN

Policy measures Subsidy per animal head by species in Hungary, 2013 (€/head)

Cattle 203,2755263

Pig 7,396473737

Poultry

0,560620557

Goat & Sheep

12,120573

Cattle: 154,4894 Million € Dairy cattle: 64,9% EAFRD – Animal welfare in the dairy sector: 13,7% National milk subsidy: 17,3% Support of dairy sector due to aflatoxin contamination: 0,007% School milk programme: 4,9% Special dairy premium: 29% Beef cattle: 35,1% Ruminant restructuring: 22,2% Cow – linked to production: 7,7% Beef cattle – decoupled: 4% Extensification payment for cattle: 1,2% Cattle export: 0,002%

Sheep and goat: 15,44161 Million €

Ruminant restructuring: 58,9% Ewe subsidy: 5,9% Additional ewe husbandry support– decoupled: 4,9% Ewe de minimis: 27,2% She-goat de minimis: 0,99% EAFRD – electronis tagging of sheeps and goats: 2,1%

Pig: 22,10806 Million €

Animal welfare payment: 98,8% Support for strategic measures improving the situation of pig sector: 1,2%

Poultry: 21,60968 Million €

Animal welfare payment: 87,3% EAFRD modernization of poultry

farms: 10,6% Live poultry meat export: 2,1% Egg export: 0,0012%

Other subsidies: 201,0123 Million €

Husbandry tasks: 1,3% Prevention and overcoming of certain animal diseases: 9,1% Subsidy for the removal and disposal of animal corpse: 2,9% Animal and plant indemnification (uncapped appropriation): 1,5% EAFRD modernization of animal farms: 73,7% Subsidy for breeding of indigenous farm animals: 1% Prevention and elimination of certain animal diseases: 1,5%

Domestic food price volatility index, 2009-2013

— Slovakia

Environmental effects of livestock production

Global estimates of emissions b species

A Windows aktivál

tivália a Windou

*Includes emissions attributed to edible products and to other goods and services, such as draught power and wool.

¹ Producing meat and non-edible outputs.

² Producing milk and meat as well as non-edible outputs.

Source: GLEAM.

Density of cattles and buffaloes, 201 (total/ha of agricultural land)

1 Hungary Ukraine 0,8 0,6 0,4 Slovakia 0,2 Czech Republic Slovenia Romania Poland

Bulgaria

1,2

Source: FAO

Density of poultries, 2011 (total/ha of agricultural land

Density of sheeps and goats, 2 (total/ha of agricultural land

Italy

Source: FAO

Emission of all farm animals - CO2 equivalent, 2012 (Gigagrams)

Source:

Greenhouse gas emission by animal husbandry sector in Hungary, 2000-2012 (1000 tonnes of CO_2 eq.)

Livestock density (heads/100 ha) in... Western Central

and Eastern

Hungarian Scientific Academy, Csathó, 2011

Organic fertilization area and the amount of applied organic fertilizer in Hungary

Source: HCSO, 2012

What are the consequences?

Statistics and explications

Changes in the structure of pig fattening farms in Hungary & other EU Member States

per cent

The development of pig numbers in Hungary since transition

1989 – 2013

Data source: KSH

The development of slaughter pig prices in Hungary & other EU Member States

May 2004 – July 2014

Production cost and revenue of pig fattening in Hungary

2003 – 2013

* Preliminary

The efficiency of pig farming in Hungary & in other EU Member States in 2012

Daily live weight gain

- **d** Genetics and raising technology
- **d** Feed cost and feed quality
- Imate conditions

Data source: BPEX, VUÉPP, AKI FADN (farms with over 500 pigs for fattening)

The dairy sector in Hungary

2012

- □ Share in total agricultural output: 7%
- □ Share in agricultural export: 4%
- Number of employees: 26 000 (milk production) + 6400 (dairy industry)
- Consumption of milk and dairy products:
 175 kg/capita

□ Share in food expenditures: **14.3%**

Source: KSH, NAV, AKI

Structural changes of milk production in Hungary

Source: KSH, Eurostat, AKI

Structural changes of milk processing in Hungary

Cost and revenue of milk production in Hungary

Source: KSH, AKI

Dairy outlook of the EU-28 2013-2022

Source: OECD-FAO

General problems in the livestock production

- Inherited history and dependency of state (government), missing relevant innovation and advisory services),
- **Export subsidies on pig and poultry meat phased out before accession**
- Due to substantial excess capacities, structural changes in the processing industry after accession
- Dynamic growth of imports of live animals as well as high value-added products since accession
- □ High feed grain prices since 2005/06 which are likely to persist in the mid-term
- Due to climatic conditions, cattle farming is not pasture based
- Outbreaks of animal diseases
- Increasing pressure on intra and extra EU markets by third countries
- Low and fluctuated producer prices
- **G** Full or partial decoupling of direct payments
- Lack of capital for modernization to comply with EU environmental, animal-health and welfare requirements
- Due to demographic reasons, no increase in consumption expected, 27% VAT
- Less interest among the farmers producing animal products, no cooperation
- **G** Stronger advisory and transparent product chains accountancy systems are needed

Conclusions and lessons to learn

Level of competitiveness! Innovation! Knowledge transfer-advisory services! Cooperation in the product chain?

- Scale of economic ? Process of concentration.
- Less consumption of meat?
- Decrease food losses?
- Greener CAP based on producers and consumer

consensus

Tailor made regulation is needed by countries Different ways of thinking about environment? Some ideas! (insects, vegetarian, biodiversity, ect.)

Which is easier to reduce?

Beef & Dairy vital CO_2 emission CO₂ emission of raw milk transport and dairy product distribution

86% of milk is water!

Entomology? Is a solution?

- Entomofágia = ,,rovarevés''' eating insects'',(entomology)
- Increasing demand
- 2 billion people, source of protein
- 113 countries
- More than 2000 species

Sustainable food supply: less products of animal origin

	Туре	Total calorie	Animal origin calorie	%	
	Western	3500	1400	40	
	Mediterranean	3400	900	26	
	Poor	2000	80	4	
Type of diet	Necessary land		FAO		
Vegetarian	500 m2				
Dominant vegetarian	700 m2				
Western	4000 m2 Source: Martine Padilla IAMM		adilla IAMM		
Riche in meat	7000 m2				

Some important indigenous breeds

Hungarian grey cattle

- Excellent meat quality
- Perfectly adopted to the extensive cattle farming in Hungarian climate

Mangalica pig

- Special quality meat
- Almost extincted in the 70's
- 3 types:
 - Blond
 - Red
 - Swallow-bellied

Sheeps

- Racka most ancient 2 types:
 - Hortobágy racka sheep
 - Gyimes racka sheep
- Cikta sheep
- Tsigai (Cigája) sheep
- Almost extincted, but survived due to the state gene conservation program

Looking towards the future

Besides state subsidy, private cooperation is necessary because these breeds are essential in:

- Keeping national identity
- •Economic value laid in those genetic potential
- Education
- •Arts
- Providing aesthetic value

Summary

Why to insist indigenous breeds in 21st century?
One reason is the same why we protect old buildings, folklore, old artifacts

- •From another point of view human kind is curious about the past
- It also has practical benefits
- •Last but not least: We are proud of them

Biodiversity: our food supply depends on it ?

Thanks for your attention!