**RuminOmics Regional Workshop** 

Improving efficiency and reducing environmental impact



### Tools for rapid analysis of animal phenotypes and the rumen microbiome

**Kevin J. Shingfield** 

kes14@aber.ac.uk





Athrofa y Gwyddorau Biolegol, Amgylcheddol a Gwledig Institute of Biological, Environmental and Rural Sciences

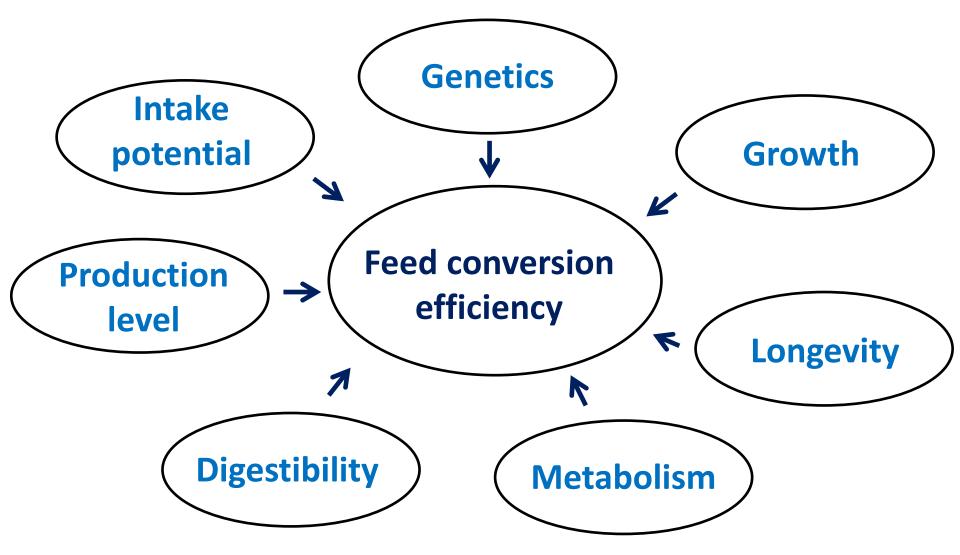


RuminOmics: Connecting the animal genome, the intestinal microbiome and nutrition to enhance the efficiency of ruminant digestion and to mitigate the environmental impacts of ruminant livestock production

Project legacy: Identification of proxies and tools for large scale phenotyping for genomic selection, optimised nutrition and better management onfarm



### **Challenges to ruminant livestock production**


- Economic
- Environmental
- Societal

Scientific and technical solutions required

- Increase efficiency
- Lower emissions
- Improve product quality



### **Technical challenge: Phenotyping of complex traits**





### **Advances in technologies**

### **Technologies**

- Sequencing/high density chips
- New "precision" devices for monitoring on farm
- FTIR and MS/MS: high throughput analysis

### Tools

- Characterise microbial populations
- More extensive phenotypes
- Genomic selection



### New phenotypes in dairy cattle

- Large scale phenotyping: number of animals, number of traits and scales from molecule to whole animal
- Genetic selection requires phenotyping of thousands of animals that remains a major constraint
- Development of high-throughput methodologies are required for application on large populations according to standardized definitions and methods

**Boichard and Brochard**, 2012



### New traits and phenotypes in cattle

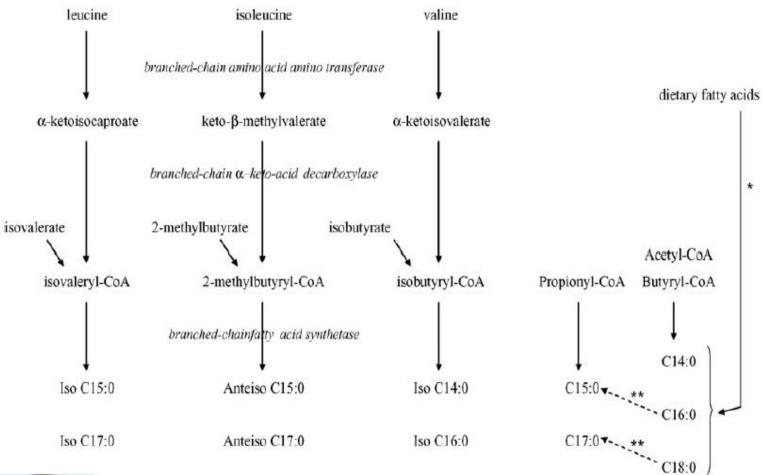
### Rationale

- Balance between effort of data recording and benefit
- Cost effective alternatives to difficult or expensive to measure traits



### **Diverse range of potential biomarkers**

- Breath
  - **Gas concentrations**
- Rumen
  - qPCR 16S gene/Archaeol/pH
- Milk
  - Fat + Protein/SCC/Fatty acid composition/ Electrical conductivity/Lactoferrin/Minerals
- Plasma


**NEFA/BHB/Urea/Insulin/Acute phase proteins** 

- Faeces
  - Archaeol



### New phenotypes of rumen function

## Odd and branched chain fatty acid synthesis in ruminal bacteria





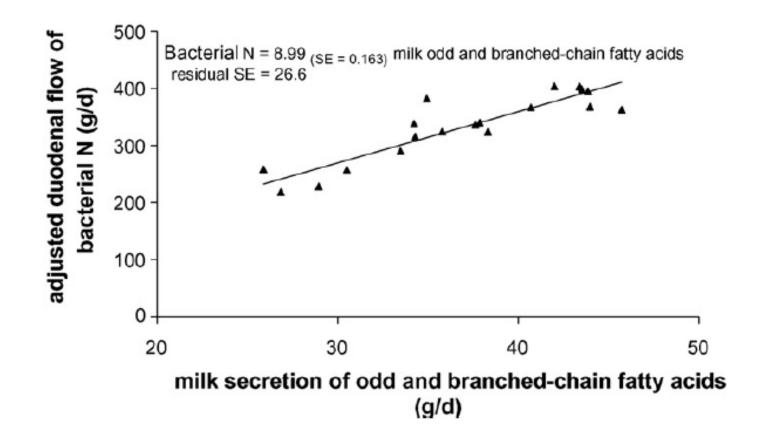
#### Vlaeminck et al., 2006

## Proportions of odd and branched chain fatty acids in bacterial membranes differ between species

|                                 | Fermentation products <sup>d</sup> | Anteiso C13:0 | Anteiso C15:0 | Anteiso C17:0 | Iso C13:0 | Iso C15:0 | Iso C17:0 | Iso C14:0 | Iso C16:0 | C13:0 | C15:0       | C17:0 | C17:1 |
|---------------------------------|------------------------------------|---------------|---------------|---------------|-----------|-----------|-----------|-----------|-----------|-------|-------------|-------|-------|
| R. albus <sup>a</sup>           | A                                  | -             | 9.4           | 1.3           | -         | -         | 0.7       | 20.6      | 11.0      | -     | 10.3        | 1.4   | -     |
| B. fibrisolvens <sup>a</sup>    | A, B, F                            | 6.4           | 16.2          | 8.6           | 6.8       | 10.4      | 5.7       | 10.8      | 11.1      | 2.9   | 7.8         | 4.3   | 3.5   |
| R. flavefaciens <sup>a</sup>    | A, S                               | -             | 2.3           | 2.9           | -         | 35.7      | 5.2       | 2.5       | 7.3       | 0.1   | 3.2         | 0.5   | -     |
| S. amylolytica <sup>b</sup>     | A, P                               |               |               |               |           |           |           |           |           |       |             |       |       |
| N6                              |                                    | -             | -             | -             | -         | 52.6      | 10.8      | 1.6       | 5.3       | 1.6   | 5.0         | -     | -     |
| B24                             |                                    | -             | -             | -             | -         | 0.1       | 0.3       | -         | 0.6       | 1.4   | 3.3         | 1.3   | 0.6   |
| Prevotella <sup>b,c</sup>       | A, S                               | 1.2           | 36.7          | 4.2           | 3.0       | 14.7      | 2.3       | 3.3       | 3.0       | 1.2   | 12.1        | 2.1   | -     |
| L. multiparus <sup>b,c</sup>    | A, L, F                            | -             | 4.0           | 2.6           | -         | 1.1       | 1.1       | 1.2       | 1.8       | 0.3   | 2.9         | 0.8   | 0.1   |
| S. dextrinosolvens <sup>c</sup> | A, S                               | 0.8           | 3.6           | 1.0           | -         | 0.1       | -         | 0.6       | 1.5       | 0.5   | <u>4.0</u>  | 0.7   | -     |
| R. amylophilus <sup>b</sup>     | A, S, F                            | -             | 1.1           | -             | -         | -         | -         | -         | -         | 0.5   | 1.1         | 0.3   | 0.1   |
| F. succinogenes <sup>a</sup>    | A, S                               | 3.9           | 7.7           | 1.2           | -         | 0.1       | 0.2       | 3.6       | 3.4       | 9.0   | <u>30.2</u> | 2.1   | -     |
| S. bovis <sup>b</sup>           | L                                  | -             | 0.9           | -             | -         | -         | -         | 0.4       | 0.2       | 0.6   | 1.7         | 1.2   | 0.2   |
| M. elsdenii <sup>c</sup>        | A, P, B                            | -             | 2.8           | -             | 0.1       | 0.2       | 0.2       | 1.5       | 0.5       | 1.5   | 6.0         | 4.5   | 3.0   |
| E. ruminantium <sup>b</sup>     | B, L, F                            |               |               |               |           |           |           |           |           |       |             |       |       |
| B1C23                           |                                    | -             | -             | -             | -         | 17.7      | 1.4       | -         | -         | 5.4   | 49.0        | 1.5   | -     |
| GA195                           |                                    | -             | 30.1          | 1.7           | -         | 0.4       | 0.2       | 6.1       | 3.7       | 0.4   | 6.5         | 0.4   | -     |
| S. ruminantium <sup>b</sup>     | A, P, L                            | -             | 0.1           | -             | -         | 0.2       | -         | 0.3       | 0.1       | 1.3   | 6.0         | 2.9   | 2.6   |

<sup>a</sup> Bacteria fermenting cellulose and hemicellulose.

<sup>b</sup> Bacteria fermenting starch.


<sup>c</sup> Bacteria fermenting sugar and pectin.

<sup>d</sup> A: acetate: S: succinate: B: butyrate; F: formate; P: propionate; L: lactate.

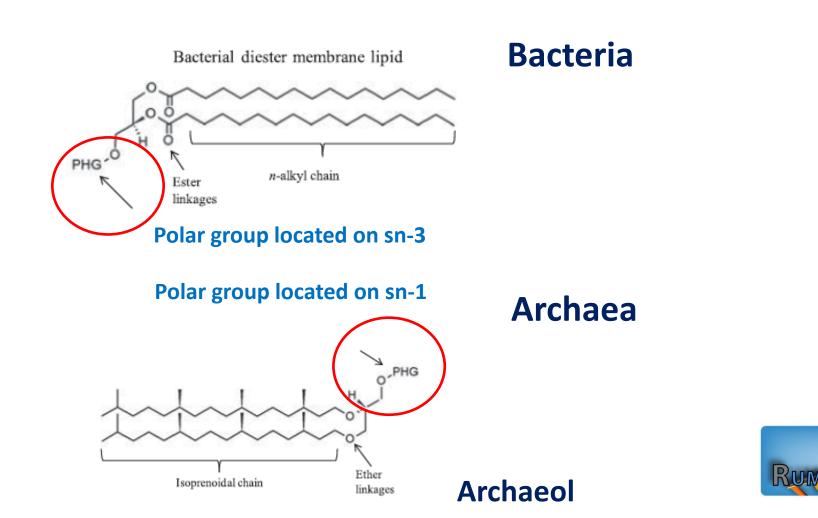


#### Fievez et al., 2012

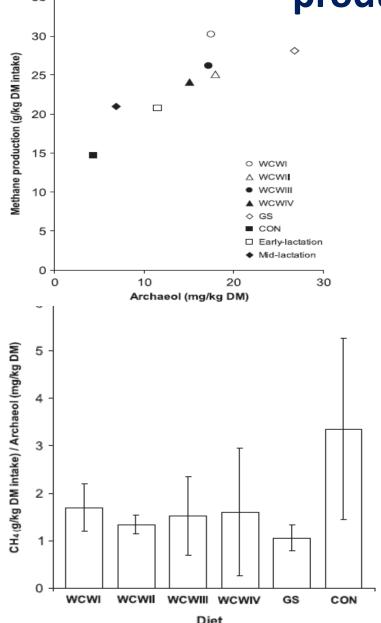
### Secretion of OBCFA in milk as a biomarker of microbial N at the duodenum






Vlaeminck et al., 2006

### Milk fatty acid composition as a biomarker of methane production


|                                                                                                    | Number of<br>observations<br>(number of | Method for measuring/                                      |                                                                                                                                                            | Percentage of variance<br>in methane production<br>explained by best<br>combination | Individual milk fatty acids related to methane production:                                       |                                                                                                                                                                                                                                            |  |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Reference                                                                                          | studies)                                | estimating methane<br>production                           | Treatments                                                                                                                                                 | of milk fatty acids                                                                 | Positive relationship                                                                            | Negative relationship                                                                                                                                                                                                                      |  |  |
| Chilliard <i>et al.</i> (2009)                                                                     | 32 (1)                                  | SF <sub>6</sub> tracer technique                           | Maize/grass silage and<br>concentrates with different<br>linseed products                                                                                  | 95 (within study)                                                                   | 4:0<br>6:0<br>8:0<br>9:0<br>10:0<br>10:1<br>11:0<br>12:0<br>12:1<br>14:0<br>15:0<br>17:0<br>20:4 | 18:1 trans-16 + cis-14<br>18:2 cis-9, trans-13<br>16:1 trans-11<br>18:1 trans-12<br>18:1 cis-13<br>18:1 trans-13 + 14<br>18:1 trans-6,7,8<br>18:1 cis-15 + trans-17<br>18:2 trans-11, cis-15<br>18:1 cis-9<br>18:1 cis-10<br>18:1 trans-10 |  |  |
| Mohammed <i>et al.</i> (2011)                                                                      | 16 (1)                                  | Respiration chambers                                       | Barley silage-based TMR with<br>different crushed oilseeds                                                                                                 | 83 (within study)                                                                   | 8:0<br>Iso-16:0*                                                                                 | 17:1 <i>cis</i> -9<br>18:1 <i>cis</i> -11<br>18:1 <i>cis</i> -13<br>18:1 <i>trans</i> -6,7,8<br>18:2<br>Iso-17:0/16:1 <i>trans</i> -6,7,8<br>18:2 <i>cis</i> -9, <i>trans</i> -13/ <i>trans</i> -8, <i>cis</i> -12<br>18:3                 |  |  |
| Dijkstra <i>et al.</i> (2011)                                                                      | 50 (10)                                 | Respiration chambers                                       | TMR based on grass and maize<br>silages with a range of<br>supplements (fumarate,<br>diallyldisulphide, yucca<br>powder, fatty acids, linseed<br>products) | 73 (within study)                                                                   | lso-14:0<br>lso-15:0<br>Anteiso-7:0                                                              | 17:1 <i>cis</i> -9<br>18:1 <i>trans</i> -10 + 11<br>18:1 <i>cis</i> -11                                                                                                                                                                    |  |  |
| Casto Montoya <i>et al.</i><br>(2011) (only considered<br>odd- and branched-<br>chain fatty acids) | 224 (13)                                | Calculation based on<br>volatile fatty acid<br>proportions | Wide range of forages and<br>forage/concentrate ratios                                                                                                     | 66 (cross-validation)                                                               | lso-14:0<br>lso-15:0<br>lso-16:0                                                                 | 15:0<br>17:0 + 17:1 <i>cis</i> -9                                                                                                                                                                                                          |  |  |

#### McCartney et al., 2013

### Structural differences in membrane lipid of rumen archaea and bacteria



### Faecal archaeol as a biomarker of methane351production



- Easy sample collection and processing
- Close relationship for

#### treatment means

- Considerable variation
  - between animals
- Poor predictor of rumen methanogenesis-selective retention in the rumen

McCartney et al., 2013

**Phenotypes of rumen function** 



- Methane production
- Nutrient digestibility
- Rumen fermentation

Development of new tools avoiding traditional constraints in hard to measure phenotypes

- qPCR of 16S and 18S genes in ruminal digesta
- Metagenomics

Archaeal abundance in *post-mortem* ruminal digesta may help predict methane emissions from beef cattle

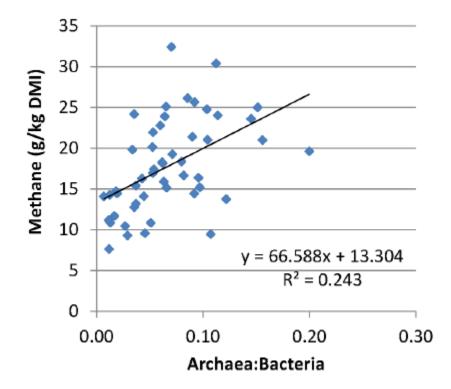
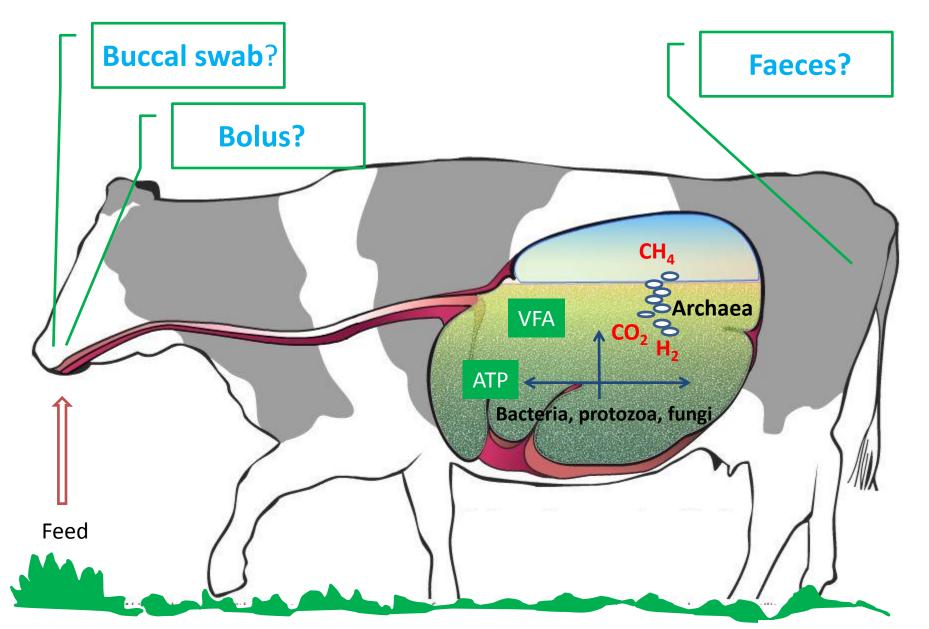


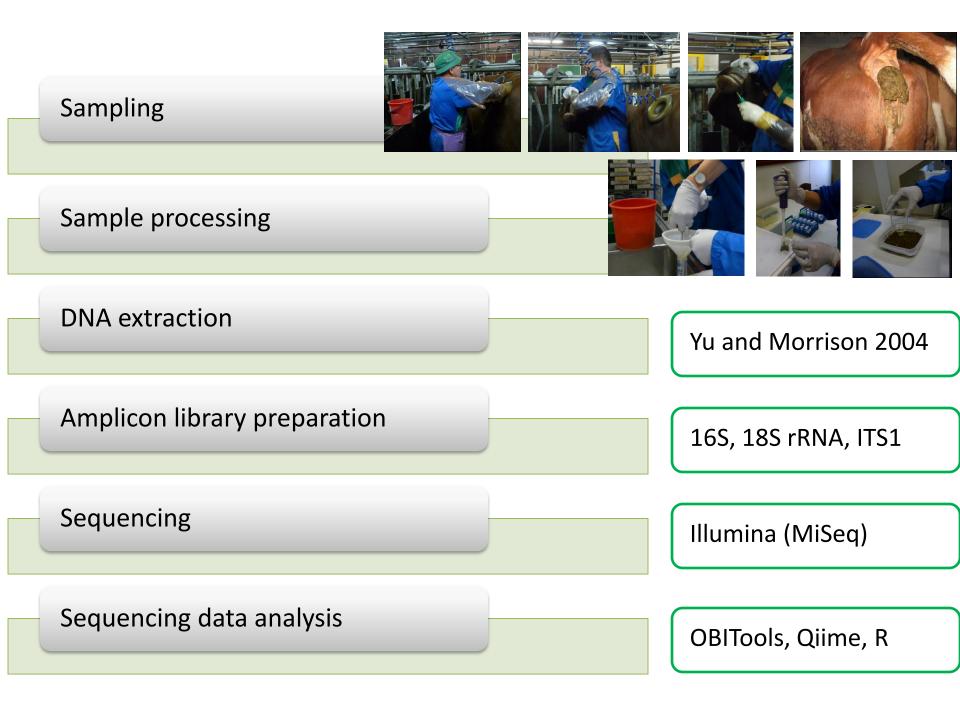

Figure 7 | Methane emissions and the archaea : bacteria ratio (A : B) in ruminal digesta samples taken from live animals immediately after exiting the respiration chamber.

#### Wallace et al., 2014




### **Development of Proxies and Phenotyping tools:**

### Lessons learnt in the RuminOmics project




# Can we find an alternative to sampling rumen contents?









### **Outcomes**

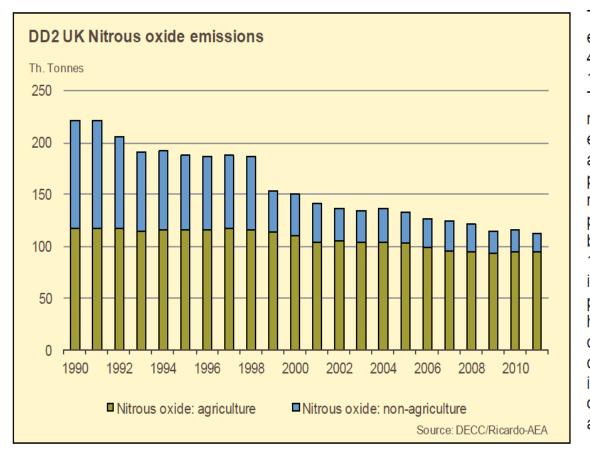
Faeces – not a viable surrogate of the rumen microbial community

**Bacteria - bolus and buccal swab** 

Archaea - bolus and buccal swab

Anaerobic fungi – bolus and buccal swab

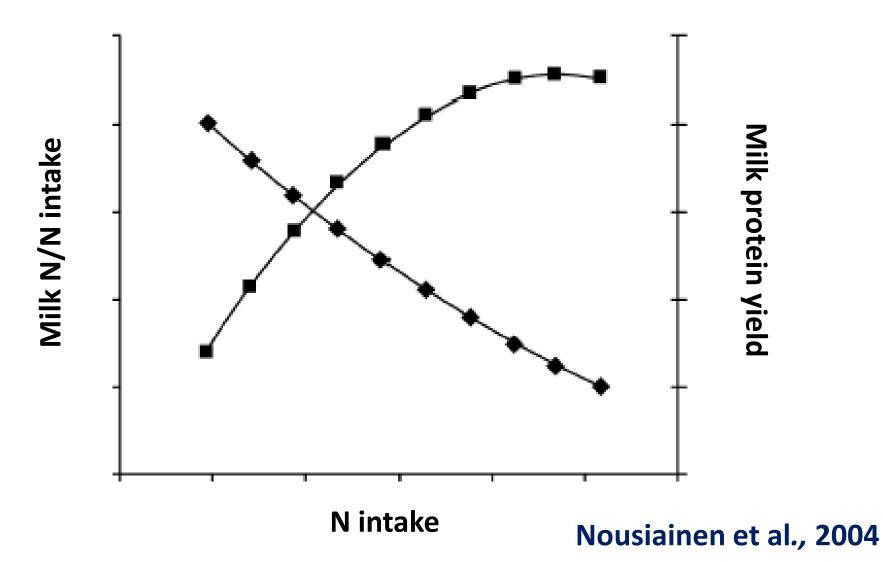
**Ciliate protozoa - bolus** 


### Nitrogen economy of the lactating cow



N intake 503 g/d

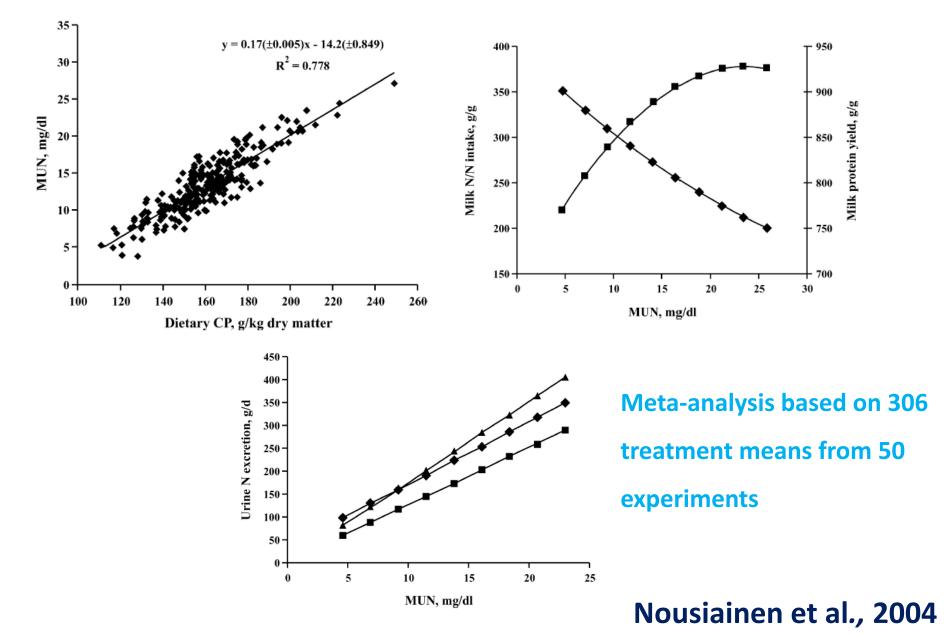
Mills et al., 2009


### Annual nitrous oxide emissions in the UK



Total nitrous oxide emissions fell by 49% between 1990 and 2011. The largest reductions were in emissions from adipic acid production (a key raw material of polyurethanes) between 1998 and 1999. Reductions in industrial process emissions have continued to decline primarily due to decreases in the production of adipic and nitric acid.

- N<sub>2</sub>O accounts for ca. 6% of UK anthropogenic greenhouse gas emissions
- About 80% of N<sub>2</sub>O from agriculture from soils


### Nitrogen intake, production and nitrogen use efficiency





# Milk urea concentration as a phenotype of nitrogen use efficiency

### **Measurements of milk urea nitrogen**





Meta-analysis to understand between-animal variation in MUN and rumen ammonia N concentrations and the association with diet digestibility and N use efficiency

- 1804 cow/period observations from 21 production trials
- 450 cow/period observations from 29 metabolic studies
- Data were analyzed by mixed-model regression analysis
- Model included diet within experiment and period within experiment as random effects: effect of diet and period excluded

Huhtanen et al., 2015

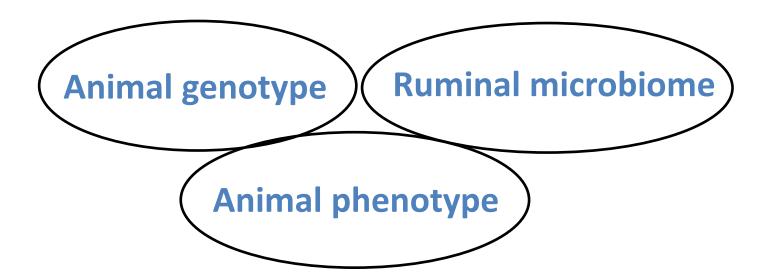


- Between cow variation in MUN 0.13 and 0.11
  % for production and metabolic datasets
- Between cow variation in MNE 0.07 and 0.08 % for production and metabolic datasets
- Including MUN and RAN in the model accounted for more variation in MNE than milk yield alone
- Between-cow variation had a smaller influence on the relationship of MUN with urinary N excretion or MNE than when based on treatment means

#### Huhtanen et al., 2015

### Conclusions




- Between-cow variation in MUN had a smaller effect on MNE compared with published responses of MUN to dietary crude protein content
- Closer control over diet composition relative to requirements has greater potential to improve MNE and lower UN on farm than genetic selection
- Measurements of MUN are more useful as a management tool than as a phenotype for genetic selection of more nitrogen efficient cows

Huhtanen et al., 2015





### **RuminOmics – Large scale data**



Intake, milk production, digestibility, methane output, fermentation characteristics, blood metabolome, milk fatty acid composition



### **Project goals**

- Understanding the role of host animal genetics, rumen microbiome and diet on methane production, nitrogen emissions, feed efficiency and milk quality
   Outcomes
- Generation of new large data for mining new biomarkers of rumen function, animal performance and milk fatty acid composition



### Thank you for your attention