REGIONAL BREEDING INDUSTRY AND GOALS

perspective from Brown Swiss breeding in Italy

Attilio Rossoni - ANARB

ITALIAN BROWN CATTLE BREEDERS' ASSOCIATION

The National Association, founded in 1957, has the following goals:

- the improvement of the Breed also view of a higher economic value
- the management of the Herdbook
- the promotion of studies and researches
- management of the Genetic Centre
- the promotion, also cooperating with other bodies, of Brown cattle

ITALIAN BROWN

- About 500.000 strong, with 400,000 cows
- 104,000 of which are registered in the herdbook
- More than 90% of these are bred artificially.
- about 8,000 breeders which adhere to the Genealogical Register
- The Italian Brown breed gives outstanding milk production of high quality with cheese yields and high environmental adaptability.

ITALIAN MILKING COWS POPULATION

- 1.754.000 milking cows
- 1.335.000 in the herdbook and in recording scheme

PRODUCTIVE CHARACTERISTICS

4,01

PRODUCTIVE CHARACTERISTICS

70,63 62,72 37,28 29,37 primipare pluripare Brown Other breeds

Herd composition (longevity)

Protein life production (kg)

An FP7 financed Project

RUMINOMICS

Connecting the animal genome, gastrointestinal microbiomes and nutrition to *improve* digestion efficiency and decrease the environmental impacts of ruminant livestock production

The environmental impact of dairy production: 1944 compared with 2007^1

J. L. Capper,* R. A. Cady,† and D. E. Bauman^{*2}

*Department of Animal Science, Cornell University, Ithaca, NY 14853; and †Elanco Animal Health, Greenfield, IN 46140

Figure 3. Carbon footprint per cow and per kilogram of milk for 1944 and 2007 US dairy production systems. The carbon footprint per kilogram of milk includes all sources of greenhouse gas emissions from milk production including animals, cropping, fertilizer, and manure.

J. Dairy Sci. 97:3231–3261 http://dx.doi.org/10.3168/jds.2013-7234 © American Dairy Science Association[®], 2014. Open access under <u>CC BY-NC-ND license</u>.

Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions

J. R. Knapp,^{*1} **G. L. Laur**,[†] **P. A. Vadas**,[‡] **W. P. Weiss**,**§ and J. M. Tricarico#** *Fox Hollow Consulting LLC, Columbus, OH 43201 †Gwinn-Sawyer Veterinary Clinic, Gwinn, MI 49841 ‡USDA Agricultural Research Service Forage Research Center, Madison, WI 53706 §Department of Animal Sciences, The Ohio State University, Wooster 44691 #Innovation Center for US Dairy, Rosemont, IL 60018

Genetic selection for feed efficiency, heat tolerance, disease resistance, and fertility can augment selection for milk yield in reducing enteric CH_4/ECM with the potential of 9 to 19% reductions (Figure 7). To achieve enteric CH_4/ECM reductions through genetic selection requires appropriate supporting management, including feeding and nutrition, health, reproduction, and housing facility design. Feeding and nutrition have modest

NOT ALL THE MILK ARE THE SAME

	Cow 1	Cow2				
Milk kg	40	97				
% protein	3.25	3.83				
% fat	3.9	4.29				
% casein	2.3	3.1				
K - casein	AA	BB				
Index if casein	0.71	0.01				
Kg caseina	0.92	0.84				
Kg of cheese	2.76	2.51				
effect k-casein	2.76	2.76				
1 lactation (305d)						
Milk kg	12200	8235				
Protein kg	991	1168				
Fat kg	1190	1308				
Cheese kg	842	842				

Nutrition						
Requirements						
	Cow 1	Cow 2				
Dry matter	22.1	19.7				
011 -237	622.34	17.41				
Protein-25%	6 4.146	3.139				
Fiber	4.045	3.448				
ufl/dry matter	1.011	0.884				
% of protein	19%	16%				

LONGEVITY – FERTILITY-HEALTH

INVITED REVIEW: QUANTIFYING REDUCTIONS IN ENTERIC METHANE EMISSIONS FROM DAIRY

Table 4. Reducing age at first calving and culling frequency reduces the number of replacements needed and enteric CH_4 emissions per unit of ECM (CH_4 /ECM) at the herd level

	Age at first calving (mo)					
Culling rate (%)	22	24	26	28		
	——— No.	No. of replacements needed per 100 cows ¹				
25	54	59	64	69		
30	65	71	76	82		
35	75	82	89	96		
40	86	94	102	110		
	- Replacemen	t contributions	to whole-herd en	nteric $\operatorname{CH}_{4}^{2}(\%)$ –		
25	19.6	21.0	40974	23.7		
30	22.7		25.7	27.2		
35	25.5	27.2		30.3		
40	28.1	29.9	31.6	33.2		

¹Calculated from St-Pierre (1998), based on 5% of heifers born dead on arrival and 10% culling and mortality. ²Calculated based on number of replacement heifers required; lactating cows with mature BW = 680 kg, producing 31.8 kg of ECM; DMI calculated according to NRC (2001); and methane production = 5.6% gross energy intake for lactating cows, 7.0% for nonlactating mature cows, and 8.0% for replacement heifers.

WHAT WE ARE DOING

BREEDING OBJECTIVE

objective

Increase cheese quality and quantity

Increase cheese yield

Increase Longevity

Decrease Incidence of mastitis Decrease managment costs

Trait used

- Kg of protein
- % protein
- K-casein
- % protein
- k-casein
- Direct longevity
- Conformation
- Food and legs
- SCS
- SCS
- MilkabilityUdder conformationSCS

ITE:TOTAL ECONIC INDEX

INCOMES			COSTS		
54.5%		45.5%			
Protein Protei Kg %	n Longevity	Milking speed	Somatic cell	Overall conformation	Pastern
45.5% 9%	18.5%	9 %	-4.5%	9 %	4.5%

if the sire is K-casein AB, kg of protein is increased by 2.5%

if the sire is K-casein BB, kg of protein is increased by 5%

MILK PRODUCTION

Productive trend

MILK QUALITY

K-CASEIN ALLELE FREQUENCY BY BIRTH YEAR

WORK IN PROGRESS

 Project with University of Sassari to investigate the feed efficiency of young sires at the Genetic Centre.

OPEN QUESTIONS

- How we can convince farmers of the importance of reducing carbon footprint?
- Is the majority of people ready to pay more for a "different food" or it's only a niche market?

OPEN QUESTIONS

• The feeling of most farmers:

- Ecologist (They live in cities, They eat in fast foods, They use good foods for pets and They might even drive a Volkswagen!) they accuse us to be polluters???
- A possible way-out:
 - In the future the word will need more food
 - we have the same amount of air, land a water
 - we must optimize their use

Farmer: you are one of the major player