# Breeding Values of Predicted Methane Production for Italian Holstein Friesian Bulls

# *M. Cassandro*<sup>1</sup>, R. Finocchiaro<sup>2</sup>

martino.cassandro@unipd.it

<sup>1</sup> University of Padova, DAFNAE Dept. Agronomy, Food, Natural resources, Animals and Environment

<sup>2</sup> Italian Holstein Friesian Cattle Breeders Association (ANAFI)





# OUTLINE

- 1) Introduction
- 2) Aims
- 3) Material and Methods
- 4) Genetic Parameters
- 5) Estimated Breedig Values
- 6) Conclusions

# **Evolution of Breeding Goals for Dairy Cattle**



# **Evolution of Breeding Goals for Dairy Cattle**



## Agriculture – Animal Production contribution to GHG



2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use

# Contribution of total emission of GHG in agriculture

### by single sources of GHG in Italy





Inventario nazionale delle emissioni in atmosfera

# Contribution of total emissions of GHG in livestock sector by single species and categories in ITALY



Atzori, Mele, Pulina, 2010



Inventario nazionale delle emissioni in atmosfera 15 July 2010 | www.nature.com/nature | £10 THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE GHG reductions should be treated as a public good, like infrastructure investments in public health and safety and, indeed, national defence. US Congress, is prospecting to define a price on GHG emissions. nature Vol 466|15 July 2010 Limiting the concentration of Carbon Dioxide and other GHG in Earth's atmosphere requires a technological and economic revolution

# A new strategy for energy innovation

The US government must make the Department of Defense a key customer for energy technologies and make greenhouse-gas, eductions a public good, say **John Alic**, **Daniel Sarewitz**, **Charles Weiss** and **William Bonvillian**.

imiting the concentration of carbon dioxide and other greenhouse gases in Earth's atmosphere requires a technological and economic revolution<sup>1,2</sup>. This kind of change takes decades, even if it is driven by powerful market and policy forces — which this one is not. We therefore suggest a new, forceful strategy for the United States, the world leader in innovation and the world's second biggest emitter of greenhouse gases.

The US government must weave into energy policy an understanding of how innovation proceeds. It occurs mostly in private firms and depends on relationships between government and industry. So the government needs to move beyond the smorgasbord of research cap-and-trade bill passed by the House of Representatives last year would price emissions at US\$20 per tonne of CO<sub>2</sub> equivalents after half a dozen years, and this almost certainly represents the upper limit of legislative forcefulness.

Much more is needed. Advances in energy technologies must penetrate an existing technological and economic infrastructure that took roughly a century to put in place and now represents enormous sunk costs that are protected by powerful vested interests<sup>3</sup>.

Many analysts in the United States have pointed to underinvestment in R&D by the US Department of Energy (DOE) since the 1980s as a symptom and a cause of slow energyimmediate practical applications. Although advocates see basic research as the wellspring of breakthroughs, many radical innovations, including the jet engine, the microprocessor and the Internet, stemmed mainly from incremental advances that were motivated by anticipated applications.

#### **Competition and cooperation**

Basic research is essential for future innovations, but there is a larger issue. For two main reasons, government R&D by itself, almost regardless of its scale, cannot foster innovation on a broad front. The first reason is simply that, although publicly financed research

# Many sectors of economy have GHG emissions reduction strategies

A mitigation of methane emission in livestock species seem to be possible Complex (genetic) interactions to be considered Animal CH-Diet

Methane from rumen fermentation:

- diet manipulation
- rumen modifiers/additives
- rumen microbial genomes
- animal selection



Alford et al. 2006, calculated a 16% of reduction of  $CH_4$  in 25 years if Residual Feed Intake will be included in beef selection programmes



To estimate genetic parameters and breeding values of predicted methane ( $pCH_4$ ) emission in Italian HF:

- Estimate heritability values for indirect prediction of CH<sub>4</sub> emission
- 2) Assess genetic correlations between indirect pCH<sub>4</sub> emission and milk traits
- Breeding Values of Predicted Methane Production for Italian Holstein Friesian Bulls

### **Material and Methods**

### Relationship between CH<sub>4</sub> emission in chambers and DMI



**Figure 5.** Relationship between  $CH_4$  emission determined in chambers and DMI for Australian (excluding outlier data from 1 cow) and Canadian (McGinn et al., 2006) data. Lines are through the origin and have slope estimates of 17.06 for the Australian data and 20.79 for the Canadian data (P < 0.001; SED = 0.928).

## **Material and Methods**

Predicted methane (CH<sub>4</sub>) emission in dairy cattle was indirect estimated using <u>the best</u> <u>equation for dairy</u> proposed by ELLIS,et al. 2007

 $(R^2 = 65\%; Error due to bias, as a percentage of total RMSE prediction = 5.19\%).$ 



## **Equation for Proxy Traits**

- pBW = 545 + 2.01 \* STATURE + 1.91 \* BODY DEPTH (Cassandro et al., 1997)
- FCM 4% = MILK YIELD \* (0.4 + 0.15 \* FAT%) (Gaines and Davdson., 1923)
- Metabolic BW (mBW) = pBW\*\*0.75

- pDMI = 0.372\*FCM + 0.0968\*mBW
  (Rayburn and Fox, 1993; Roseler et al., 1997, NRC, 2001)
- pCH4 = 3.23 + 0.809\*pDMI
  (Ellis et al., 2007)



#### Italian Journal of Animal Science 2013; volume 12:e73

#### **REVIEW ARTICLE**

of Udine, Italy

|                                                             | Method                                                                                                          | r    | Reference                                                               |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------|
| Genetic aspects of enteric                                  | PME from breath analysis                                                                                        |      |                                                                         |
| mothana amissian                                            | Respiratory chamber                                                                                             | 0.96 | Place <i>et al.</i> , 2011                                              |
| methane emission                                            | Head hoods                                                                                                      | 0.96 | Place <i>et al.</i> , 2011                                              |
| in livestock ruminants                                      | SF6 tracer technique                                                                                            | 0.83 | Muñoz <i>et al.</i> , 2012                                              |
|                                                             | Green feeder                                                                                                    | 0.89 | de Haas <i>et al.</i> , 2011                                            |
|                                                             | Laser methane detector                                                                                          | 0.80 | Chagunda and Yan, 2011                                                  |
| Martino Cassandro. <sup>1</sup> Marcello Mele. <sup>2</sup> | FTIR- Fourier Transform Infrared Spectroscopy                                                                   | 0.89 | Garnsworthy <i>et al.</i> , 2012                                        |
|                                                             | PME from milk records                                                                                           |      |                                                                         |
| Bruno Stefanon                                              | CH <sub>4</sub> (g/kg DM) = 24.6 ( $\pm$ 1.28) + 8.74 ( $\pm$ 3.581)×C17:0 anteiso - 1.97 ( $\pm$ 0.432)        | 0.85 | Dijkstra <i>et al.</i> , 2011                                           |
| <sup>1</sup> Department of Agronomy, Food, Natural          | $\times$ trans-10 + 11 C18:1-9.09 (± 1.44)×cis-11C18:1 + 5.07 (± 1.937) ×cis-13C18:1                            |      |                                                                         |
| recovered Animals and Environment                           | PME from feed intake records                                                                                    |      |                                                                         |
| resources, Animais and Environment,                         | $CH_4 (MJ/d) = 3.23 (\pm 1.12) + 0.809 (\pm 0.0862) \times DM Intake (kg/d)$                                    | 0.65 | Ellis <i>et al.</i> , 2010                                              |
| University of Padova, Legnaro (PD), Italy                   | $CH_4 (Mcal/d) = 0.814 + 0.122* Nitrogen Free Extracts (kg/d) + 0.415*$                                         | 0.72 | Moe and Tyrrell, 1979                                                   |
| <sup>2</sup> Department of Agricultural, Food               | Hemicellulose (kg/d) + 0.633 * Cellulose (kg/d)                                                                 | -    | (cited from Demeyer and Fievez, 2000)<br>Van Es, 1978, IPCC, 2000, 2006 |
| and Agri-Environmental Science,                             | $CH_4$ (g/d) = feed intake (kg of DM/d) × 18.4 (MJ/kg of DM)/0.05565 (MJ/g)                                     |      | Bannink et al., 2011                                                    |
| University of Pisa, Italy                                   | $\times 0.06 \times \{1 + [2.38 - \text{level of intake (multiples of maintenance level)}] \times 0.04\}^\circ$ |      |                                                                         |
| <sup>3</sup> Denoting of the standard                       | $CH_4(g/d) = [grass or grass silage (kg of DM/d) \times 21.0 (g/kg of DM) + concentrates$                       | -    |                                                                         |
| Department of Agricultural                                  | (kg of DM/d) $\times$ 21.0 (g/kg of DM) + corn sliage (kg of DM/d) $\times$ 16.8 (g/kg of DM)]                  |      |                                                                         |
| and Environmental Science, University                       | $\times \{1 + \lfloor 2.50 - \text{ revel of intake (multiples of maintenance rever)} \times 0.04\}\}^{-1}$     |      |                                                                         |

Table 2. Methods to predict methane emission (PME) using different variables.

r, correlation with respiratory chambers; °18.4 MJ/kg: energy released by each unit of feed DM (Van Es, 1978), 0.05565 MJ/g: energy generated by methane (IPCC, 2006), 0.06 × gross energy intake (GE, MJ/d): methane production level in MJ/d (IPCC, 2000), 2.38 × maintenance feed intake level: energy requirements scaled to an average cow at feed intake level, 0.04: correction factor of 0.04 per unit feed intake level; <sup>#</sup>g/kg of DM: CH4 production for 1 kg DM of grass, grass silage or concentrate, 21 g/kg of DM: CH4 production for 1 kg DM corn silage.



## STATISTICAL BAYESIAN ANALYSES

Bayesian approach and Monte Carlo Markov-Chain methods (Sorensen & Gianola, '02)

Model accounted for effects of:

- HERD (random effect)
- DAYS IN MILK (fixed effect)
- PARITY (fixed effect)
- ADDITIVE GENETIC (random effect).

Flat prior distributions were assigned to all the effects.

A single chain of 1,000,000 iterations was obtained, with a burn-in of 50,000.

Samples were saved every 200 iterations.

Posterior median was used as a point estimate of  $h^2$  and  $r_q$ .

# Basic statistics for Milk Yield & Composition, Somatic Cell Score, Body Weight (BW), Cheese Yield and Predicted CH<sub>4</sub> emission

| Trait                     | Unit             | Mean  | SD    |
|---------------------------|------------------|-------|-------|
| Milk Yield                | Kg/d             | 32.53 | 10.18 |
| Fat                       | %                | 3.89  | 0.76  |
| Protein                   | %                | 3.45  | 0.40  |
| SCS                       | score            | 3.06  | 1.92  |
| pBW                       | Kg               | 665.8 | 19.5  |
| Cheese *                  | Kg/d             | 2.44  | 0.69  |
| Predicted CH <sub>4</sub> | MJ/d             | 20.99 | 2.35  |
| Predicted CH <sub>4</sub> | MJ/kg of milk    | 0.70  | 0.20  |
| Predicted CH <sub>4</sub> | MJ/ kg of cheese | 9.19  | 2.18  |

\* Parmigiano Reggiano cheese: predicted by milk coagulation time, curd firmness, and protein % (Cassandro, 2010)

# Marginal Posterior Density of h<sup>2</sup> for Milk Yield & Composition, Somatic Cell Score, Body Weight (BW), Cheese Yield and pCH<sub>4</sub> emissions

| Tro:t                     | L loit          | Constin CD-             | h <sup>2</sup> |       |       |     |
|---------------------------|-----------------|-------------------------|----------------|-------|-------|-----|
| Ifall                     | Unit            | Genetic SD <sup>-</sup> | PM             | LB95% | UB95% | P   |
| Milk Yield                | Kg/d            | 2.77                    | 0.14           | 0.01  | 0.24  | 72  |
| Fat                       | %               | 0.44                    | 0.36           | 0.03  | 0.36  | 100 |
| Protein                   | %               | 0.18                    | 0.28           | 0.13  | 0.56  | 99  |
| SCS                       | Score           | 0.49                    | 0.06           | 0.005 | 0.20  | 23  |
| BW                        | Kg              | 9.09                    | 0.21           | 0.08  | 0.39  | 94  |
| Cheese                    | Kg/d            | 0.23                    | 0.21           | 0.07  | 0.43  | 92  |
| Predicted CH <sub>4</sub> | MJ/d            | 0.47                    | 0.07           | 0.004 | 0.21  | 30  |
| Predicted CH <sub>4</sub> | MJ/kg of milk   | 0.06                    | 0.21           | 0.07  | 0.43  | 93  |
| Predicted CH <sub>4</sub> | MJ/kg of cheese | 0.99                    | 0.31           | 0.13  | 0.56  | 99  |

PM = median of the posterior density, LB95% = lower bound of 95% probability density region

UB95% = upper bound of 95% probability density region;  $P(h^2 > 0.10)$  = posterior probability for values of  $h^2$  > than 0.10

# Global dry matter initiative

**Table 1.** Number of lactations and animals as well as the mean, genetic standard deviation, heritability and repeatability of dry matter intake in all countries (i.e., All countries) or each individual country.

| Country       | Lactations | Animals | Mean | SDg  | h²          | Repeatability |
|---------------|------------|---------|------|------|-------------|---------------|
| Cows          |            |         |      |      |             |               |
| All countries | 10701      | 6953    | 19.7 | 1.13 | 0.34 (0.03) | 0.66 (0.01)   |
| Canada        | 411        | 202     | 22.2 | 1.01 | 0.19 (0.14) | 0.46 (0.06)   |
| Denmark       | 668        | 363     | 22.1 | 1.48 | 0.52 (0.12) | 0.62 (0.04)   |
| Germany       | 1141       | 1095    | 20.2 | 0.64 | 0.08 (0.06) | 0.84 (0.05)   |
| lowa          | 398        | 398     | 23.5 | 1.48 | 0.41 (0.14) |               |
| Ireland       | 1677       | 827     | 16.7 | 0.88 | 0.41 (0.10) | 0.64 (0.02)   |
| Netherlands   | 2956       | 2241    | 21.4 | 1.15 | 0.39 (0.05) | 0.54 (0.03)   |
| UK            | 2840       | 1277    | 17.4 | 1.07 | 0.31 (0.06) | 0.72 (0.02)   |
| Wisconsin     | 507        | 447     | 25.3 | 0.61 | 0.11 (0.14) | 0.68 (0.07)   |
| Australia     | 103        | 103     | 15.6 |      |             |               |
|               |            |         |      |      |             |               |
| Heifers       |            |         |      |      |             |               |
| Australia     |            | 843     | 8.3  | 0.77 | 0.20 (0.11) |               |
| New Zealand   |            | 941     | 7.6  | 0.66 | 0.34 (0.12) |               |



| _                      |                                         |
|------------------------|-----------------------------------------|
| nima                   | Bovini da                               |
| oni A                  | predizione di                           |
| oduzi                  | predizione di                           |
| le Prociation          | predizione di                           |
| n Asso                 | Bovini da                               |
| Scier                  | predizione di                           |
| er la<br>nd Pro        | predizione di                           |
| iazione p<br>Science a | 2.00                                    |
| Assoc<br>Animal        | 0.00                                    |
| S.P.A.                 | Figure 3. F<br>cow. Each<br>corrected n |
| -                      |                                         |

| Bovini da LATTE                                          | h²                 | Fonte                    |  |
|----------------------------------------------------------|--------------------|--------------------------|--|
| predizione di Metano enterico emesso, MJ/d               | 0,12               | Cassandro et al., 2010   |  |
| predizione di Metano enterico emesso, g/d (PME)          | 0,35               | De Haas et al., 2011     |  |
| predizione di Metano enterico emesso, PME/Kg LcGP        | 0,58               | De Haas et al., 2011     |  |
| Bovini da Carne                                          | h²                 | Fonte                    |  |
| predizione di Metano enterico emesso, MJ/d               | 0,18               | Albera e Cassandro, 2011 |  |
| predizione di Metano enterico emesso, kg/d Accrescimento | 0,25               | Albera e Cassandro, 2011 |  |
| ₹ 2.00<br>0.00<br>0 1.000 2,000 3,000 4.000 5,000 6      | <b>3,000</b> 7.000 | •••• •<br>8.000 9.000    |  |

Output per cow, kg of FPCM per year

Figure 3. Relation between emission of carbon footprint of milk and milk yield per cow. Each dot represents a country (Gerber et al., 2011). FPCM = fat- and proteincorrected milk.

# Genetic Correlation $(r_g)$ of predicted $CH_4/Cheese$ , kg with some other traits

| Trait      | Unit  | r <sub>o</sub> of pCH₄/kg of cheese |       |       |
|------------|-------|-------------------------------------|-------|-------|
|            |       | ΡM                                  | LB95% | UB95% |
| Milk Yield | Kg/d  | -0.86                               | -0.97 | -0.60 |
| Fat        | %     | 0.64                                | 0.34  | 0.83  |
| Protein    | %     | -0.02                               | -0.46 | 0.46  |
| SCS        | score | 0.67                                | 0.07  | 0.95  |
| BW         | Kg    | 0.25                                | -0.22 | 0.63  |
| Cheese*    | Kg/d  | -0.94                               | -0.99 | -0.80 |

PM = median of the posterior density, LB95% = lower bound of 95% probability density region UB95% = upper bound of 95% probability density region;  $P(h^2 > 0.10)$  = posterior probability values of  $h^2$  > than 0.10 Preliminary results on EBV for predicted methane emission in Italian Holstein Friesian

- 12,238 bulls from the official April 2015
- EBVs rescaled on phenotypic data of cattle born in the period 2007-2009:
  - milk yield and fat %
  - stature and body depth to predict BW

• Then, pDMI have been calculated

# EBV for pCH<sub>4</sub> emission and PFT of Italian HF bulls (April, 2015)



# EBV for pCH<sub>4</sub> emission and PFT of Italian HF bulls (April, 2015)



# EBV for pCH<sub>4</sub> emission and PFT of Italian HF bulls (April, 2015)





Chromosome

#### Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants

N. K. Pickering<sup>1a</sup>, V. H. Oddy<sup>2</sup>, J. Basarab<sup>3</sup>, K. Cammack<sup>4</sup>, B. Hayes<sup>5,6,7</sup>, R. S. Hegarty<sup>8</sup>, J. Lassen<sup>9</sup>, J. C. McEwan<sup>1</sup>, S. Miller<sup>10,11b</sup>, C. S. Pinares-Patiño<sup>12c</sup> and Y. de Haas<sup>13†</sup>



AGENINGENUR

### CONCLUSIONS

The livestock sector, in particular genetic area, has enormous potential to contribute to climate change mitigation.

Reducing GHG concentrations in the atmosphere is a public good and should be recognized as such, much like other traditional responsibilities of government.

Results of this explorative study suggest that predicted  $CH_4$  per unit of output is heritable and can be selected for reducing gas emissions without depleting production, functionality and fertility traits.

Direct individual measurements together with a genomic approach, of  $CH_4$  are very helpful for more efficient selection strategies and for a better genetic control on daily  $CH_4$  emission.

# WORK IN PROGRESS

- We are updating our pBW formula
  - Collecting data for live body weight



- Use others type/condition traits in the formula,
- Trying to set up agreements for individual feed intake collection.
- Joint and attend (inter)national working groups (e.g. gDMI, ICAR group, ASPA "Adaptability" commission)
- Creating a national working group on the topic

RuminOmics Regional Workshop – Lodi, 5<sup>th</sup> – 6<sup>th</sup> October 2015

# THANK YOU

Grazie

#### martino.cassandro@unipd.it

<sup>1</sup> University of Padova, DAFNAE Dept. Agronomy, Food, Natural resources, Animals and Environment

<sup>2</sup> Italian Holstein Friesian Cattle Breeders Association (ANAFI)





# Research Publications with GHG emission and Livestock





