

RuminOmics

RuminOmics

Connecting the animal genome, the intestinal microbiome and nutrition to enhance the efficiency of ruminant digestion and to mitigate the environmental impacts of ruminant livestock production

John Wallace

Collaborative project Jan. 2012 – Dec. 2015 www.ruminomics.eu

Methane, ruminants and the environment

Methane production in ruminants

Fermentation \downarrow Protozoa, fungi, bacteria $H_2 + CO_2$ \downarrow Archaea CH_4

Methane as a greenhouse gas

US Environmental Protection Agency, 2000

 CH_4 has a global warming potential ("radiative forcing") 28 times that of CO_2

Methane contributes approximately 18% to the overall global warming effect

Protein metabolism

RuminOmics

RuminOmics

Connecting the animal genome, the intestinal microbiome and nutrition to enhance the efficiency of ruminant digestion and to mitigate the environmental impacts of ruminant livestock production

John Wallace

Collaborative project Jan. 2012 – Dec. 2015 www.ruminomics.eu

RuminOmics - Partners

How does nutrition affect this relationship?

RuminOmics - Response to technology

THE CALL:

KBBE.2011.1.1-03: Efficiency of ruminant digestive systems and reduction of the ecological footprint through a combination of systems biology, 'omics'

RuminOmics - Experiments

•

1000 cows in UK, Italy, Sweden, Finland

- 20 cows in Sweden, Finland Impact of N, CHO, lipid nutrition
- 50 cows in UK, Italy, Sweden, Finland • Full metagenome analysis

RuminOmics - Experiments II

Bovine single-egg twins

RuminOmics

Interspecies digesta transfer

RuminOmics - Experiments III

Systems biology and pathway analyses of the host [7.7]

Tools, resources, legacy

Proxies

Milk fatty acids

Relationship with methane

Positive	Negative
iso C14:0	trans 10+11 C18:1
iso C15:0	C15:0
anteiso C17:0	C17:0+C17:1

CH4 production was positively correlated with a dominance of sequences representing T-RFs related to *Methanobrevibacter thaueri*, *Methanobrevibacter millerae*, and *Methanobrevibacter*

smithii relative to *Methanobrevibacter ruminantium* and *Methanobrevibacter olleyae*. Total numbers of methanogens

and total numbers of *Methanobacteriales* were significantly

Tools, resources, legacy

Proxies

SEVENTH FRAMEWORK PROGRAMME

RuminOmics

Buccal-ruminal-faecal microbiomes

Tools, resources, legacy

• Tools

Metaproteomics

pI

Work Package Structure

RuminOmics - Aspirations

- The answer to the animal-microbe conundrum
- Bioinformatics legacy
- Trained & more efficient industry
- Environment legacy

The Bioinformatics challenge

